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Outline

• Review last class

• Midterm Exam October 18 covers 
material up to and including homework 
due today

• Origin of systems of differential 
equations

• Solving systems of equations 
– Combining into one equation

– Matrix approach
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Review Last Class

• Analysis of forced vibrations as example 
of nonhomogenous equations

• Examine higher order differential 
equations
– Focus on constant coefficient equations

– Similar approach to second order except 
that nth order equation required for k

• Use undetermined coefficients for 
nonhomogneous solutions
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Review Forced Vibrations
• Imposed force gives ODE md2y/dt2 + 

cdy/dt + ky = f(t) (0
2 = k/m – c2/4m2)

• yH = e-ct/2m(C sin 0t + D cos 0t)
• Consider example where f(t) = F0cos t
• y = yH + yP = yH + A sin t + B cos t
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Undamped Forced Osciallations y0 = v0 = 0
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Higher Order Equations
• nth order ODE with constant coefficients
• Solution is y = yH + yP
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• Homogenous solution

• k are solutions to the equation n + an-

1 n-1 + an-2 n-2 + ··· + a1  + a0 = 0

• Multiple and complex roots
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Higher Order Equations II

• yP may be found by undetermined 
coefficients or variation of parameters
– Use same process for method of 

undetermined coefficients

– May have eax, sin ax, or cosine ax in r(x) 
where a root of homogenous solution

• Must handle possibility of multiple roots in 
higher order equations

– Variation of parameters is more complex

9

Systems of Equations

• Arise in engineering problems with 
multiple components that are coupled

• Can convert higher order equations to 
system of equations
– Sometimes reveals ideas about physical 

system, e.g. write equation for dy/dt and 
dv/dt where v = dy/dt

– Used in numerical solutions of higher order 
ODEs
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Physical Problem

m1

m2

k1

k2

k3

y1

y2

• Example is system of two 
masses joined by a 
spring
– Each mass is connected 

by a spring to a wall or 
another mass

– Have a y coordinate for 
each mass

– Both y values are zero at 
static equilibrium

– F = ma for each mass 
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Deriving Equations

m1

m2

k1

k2

k3

y1

y2

• Force on first mass is      
–k1y1 plus k2(y2 – y1)

• Force on second mass is      
–k3y2 plus k2(y1 – y2)

• m1d2y1/dt2 = –(k1+ k2 ) y1
–k2 y2

• m2d2y2/dt2 = k2y1 – (k2 + 
k3 ) y2

• Solve both equations 
simultaneously
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Simultaneous Solution

• If we knew y1, we could 
find y2 from the first 
equation by algebra
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• Convert system into a single equation for y1

• Start with second derivative of first equation
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Simultaneous Solution II
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• Now have one equation with only y1

• Equation has the general form shown below
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Simultaneous Solution III
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original equation
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Simultaneous Solution IV
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• Have four solutions 
to the equation

• The solution is

• For this ODE

• Where the k are solutions to 4 + a 2 + 
b = 0; solve 2 + a + b = 0 for  = 2
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Simultaneous Solution IV
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• Pure imaginary number gives general 
solution: y1 = A sin 1t + B cos 1t + Csin 2t 
+ D cos 2t with 1

2 = k/m 2
2 = 3 k/m

• For all k and m the same:
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Simultaneous Solution IV
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• d2y1/dt2 = –1
2 A sin 1t  – 1

2 B cos 1t 
– 2

2 Csin 2t  – 2
2 cos 2t

• For all k and m the same,  1
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2 = 3 k/m

• Get y2 from 






 
 1

1

21
2

1
2

2

1
2 y

m

kk

dt

yd

k

m
y

18

Simultaneous Solution V
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• For all k and m are the same, 1
2 = k/m 

and m1/k2 = m/k, and (k1 + k2)/m1 = 2k/m
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Simultaneous Solution VI
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• For all k and m are the same, 2
2 = 3k/m 

and m1/k2 = m/k, and (k1 + k2)/m1 = 2k/m
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Simultaneous Solution VII

• Determine A, B, C, and D from initial 
conditions on the two mass positions and 
velocities, y1(0), y1’(0), y2(0), and y2’(0) 
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Simultaneous Solution VIII
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Simultaneous Solution IX

• Initial condition of zero velocity and equal 
displacement towards center

• y1(0) = a, y2(0) = -a, y1’(0) = y2’ (0) = 0
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Simultaneous Summary
• Differentiate first (y1) equation to obtain 

derivative(s) of y2 that are present in 
second equation

• Solve first equation for y2

• Substitute equations for y2 and its deriv-
atives into the result of the first step

• Result is a higher order equation that 
can be solved (if possible) by usual 
methods

24

Matrix Differential Equations

• Consider a system of n variables yi(t)

• Each variable is described by a 
differential equation that has a linear 
dependence on all the other yk

• Show equations as individual equations 
and in matrix form
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Matrix Differential Equations II

• Matrix components in rAy
y
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Solving

• Assume that A(n x n) has n linearly 
independent eigenvectors

• Eigenvectors are columns of matrix, X

• Define a new vector s = X-1y (y = Xs)

• Substitute y = Xs into the matrix 
differential equation

• Since A components are constants, X
components are constants

rAy
y
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dt

d
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Solving

• Premultiply last equation by X-1

• X-1AX = , a diagonal matrix whose 
components are A eigenvalues
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dt

d
Continued
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• Each p component may contain all the ri
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Structure of ps
s
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• Result is set of n scalar differential 
equations: dsi/dt = pi – isi
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Solution of ps
s


dt

d

• We know the solu-
tion to dsi/dt + isi

= pi, (general linear 
first order ODE)
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Matrix Solution Terms

• With these definitions, si = Cie
i
t + qi

becomes s = E(t)C + q (at t = 0, E(0) = I)
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Apply Initial Conditions on y(0)

• Get y = Xs = XEC + Xq
• At t = 0, E = I, and  y = y0 = initial y

components, giving y0 = XIC + Xq0

• Premultiply by X-1 to obtain X-1y0 = 
X-1XC + X-1Xq0 = C + q0

• Constant vector, C = X-1y0 – q0

• Result: y = XE [X-1y0 – q0] + Xq
• Homogenous (q = 0): y = XEX-1y0
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Complex Roots

• Will produce solutions in complex 
conjugate pairs

• Exponential solutions can then be 
decomposed into real and imaginary 
parts

• Imaginary exponentials form sine and 
cosine solutions
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Reduction of Order Example

• An nth order equation can be written as 
a system of n first order equations

• d3y/dx3 + g d2y/dx2 + h dy/dx + f y = k

• Define z = dy/dx, w = dz/dx = d2y/dx2, 
which gives dw/dx = d3y/dx3

• We now have three first-order ODEs
– dw/dx = k – g w – h z – f y

– dz/dx = w

– dy/dx = z
34

Reduction of Order

• An nth order equation can be written as 
a system of n first order equations

• Consider a general nonlinear nth order 
equation as shown below
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• Define a sequence of variables, zk

– Start with z1 = y, z2 = dz1/dx = dy/dx, and 
continuing as zk = dzk-1/dx = dk-1y/dxk-1
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Reduction of Order II

• z1 to zn are n variables that satisfy 
simultaneous, first-order ODEs
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• Continue this definition up to zn, where 
dzn/dx = dny/dxn
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Reduction of Order III

• The main application of reduction of 
order is to numerical methods

• Numerical solutions of ODEs develop 
methods to solve a system of first order 
equations

• Higher order equations are solved by 
converting them to a system of first 
order equations
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Reduction of Order Example

• Define variables y3 = dy1/dt and y4 = dy2/dt 
• Then dy3/dt = d2y1/dt2 and dy4/dt = d2y2/dt2

• Have four simultaneous first-order ODEs
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Write as Matrix Equation

• Write four equations as 0Ay
y


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Solve the Matrix Equation

• From array solution, we have solution to 
dy/dx + Ay = 0 as y = XEX-1y0

– X is eigenvector matrix, y0 is initial 
condition vector and E is shown below
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Get Eigenvalues
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Get Eigenvalues II
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Example Concluded

• We see that eigenvalue equation is the 
same as the one obtained by 
simultaneous solution

• To proceed with this approach we would 
have to find eigenvectors to get X matrix 
and its inverse

• This approach is best when we have a 
symmetric A matrix (so that X-1 = XT) 
and eigenvalues are real
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Supplemental Material

• The following charts are are intended to 
show comparison of class material

• The first set of charts shows the solution 
of the equation dy/dx + Ay = r for 
constant r

• The second set of charts shows the 
equivalence of the second order 
differential equation solution and the 
eigenvalue solution for 

44

solution with constant pps
s


dt

d

• Solution from 
previous chart

 ii
tt

i Cdtpees ii   

• If pi is constant (or 
zero) we have i

it
ii

peCs i


  

• How do we write pi/i in matrix notation?

• Start with -1p where -1 is diagonal matrix 
whose components are 1/i

– For A = diag(ai), A-1 = B = diag(1/ai)
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Terms in Solution of ps
s


dt

d

• With these definitions, si = Cie
i
t + pi/i

becomes s = EC + -1p (E(0) = I)
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Apply Initial Conditions on y(0)

• Get y = Xs = XEC + X-1p
• At t = 0, E = I, and  y = y0 = initial y

components, giving y0 = XIC + X-1p
• Premultiply by X-1 to obtain X-1y0 = 

X-1XC + X-1X-1p = C + -1p
• Constant vector, C = X-1y0 - -1p
• Result: y = XE [X-1y0 - -1p] + X-1p
• Homogenous(p = 0): y = XEX-1y0
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Second Order Example

• Show connection between eigenvalue 
equation for  and ODE equation for 
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Second Order Example

• Get eigenvalues of A matrix

    0
1





 ba

ab
Det IA

    02  ba

• Same equation as for second order 
equation except for sign change
– Sign change necessary for use in formulas 

( in second order equation is – for array.)


