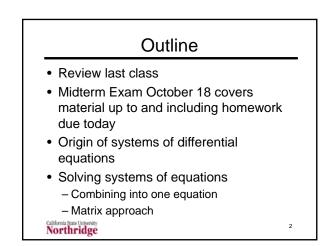
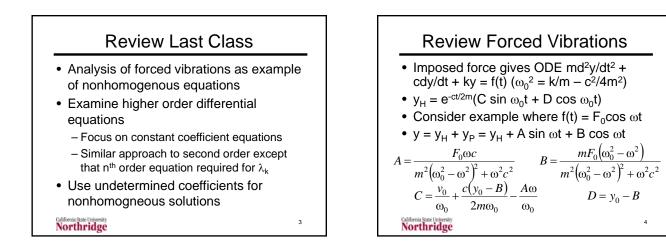
Systems of Differential Equations

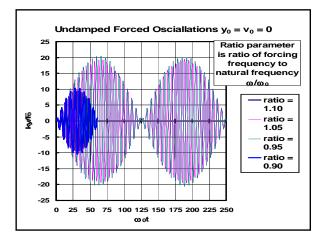
Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis

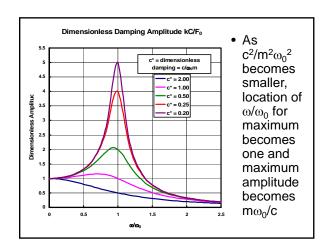
October 11, 2017

California State University Northridge







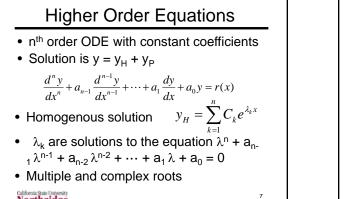


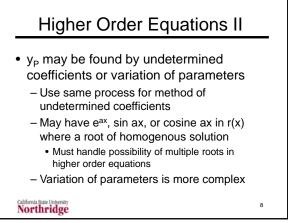
MW 501A Seminar in Engineering Analysis

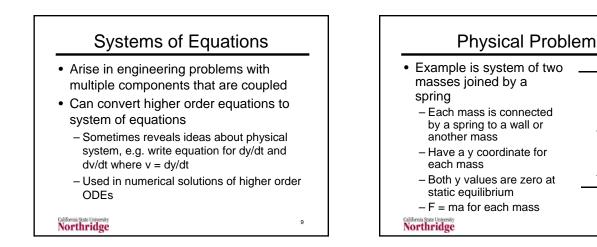
k1

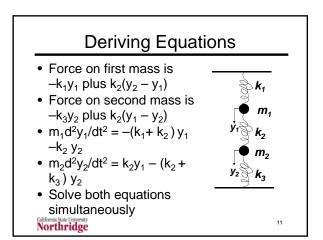
m₂

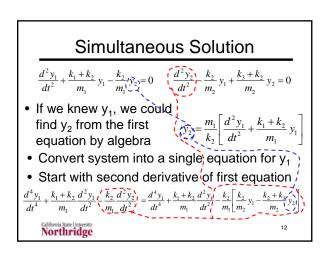
10



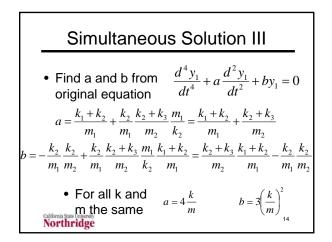


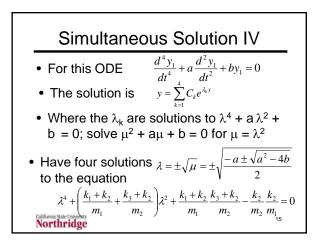


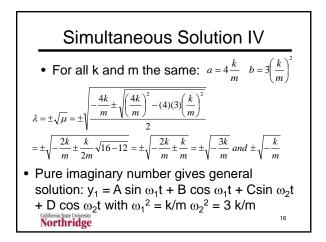


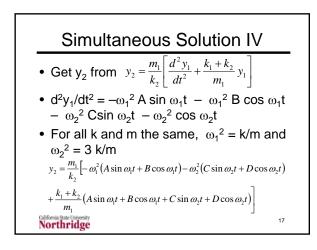


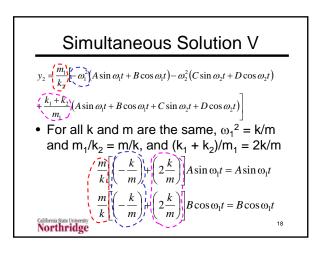
Simultaneous Solution II		
$\frac{d^4 y_1}{dt^4} + \frac{k_1 + k_2}{m_1} \frac{d^2 y_1}{dt^2} - \frac{k_2}{m_1} \frac{k_2}{m_2} y_1$		
$+\frac{k_2}{m_1}\frac{k_2+k_3}{m_2}\frac{m_1}{k_2}\left[\frac{d^2y_1}{dt^2}+\frac{k_1+k_2}{m_1}y_1\right]=0$		
 Now have one equation with only y₁ Equation has the general form shown below 		
California State (Interesty) Northridge $\frac{d^4 y_1}{dt^4} + a \frac{d^2 y_1}{dt^2} + b y_1 = 0$ 13		

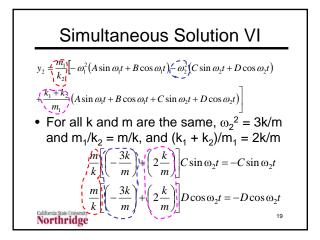


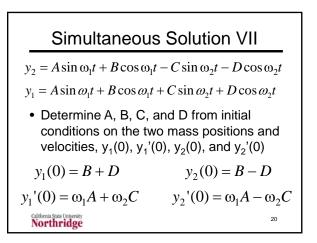


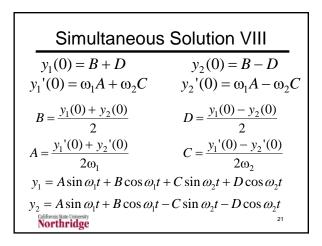


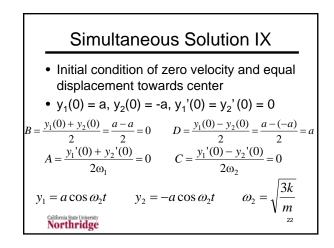










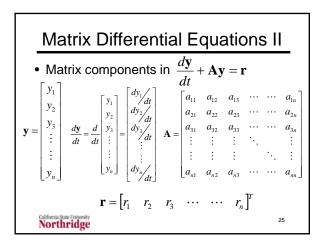


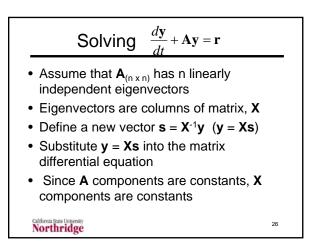
Simultaneous Summary

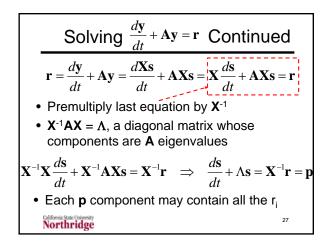
- Differentiate first (y₁) equation to obtain derivative(s) of y₂ that are present in second equation
- Solve first equation for y₂
- Substitute equations for y₂ and its derivatives into the result of the first step
- Result is a higher order equation that can be solved (if possible) by usual methods

23

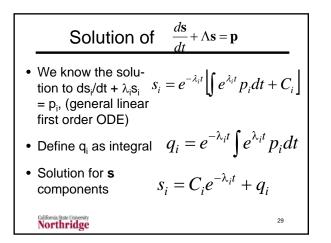
California State University Northridge Matrix Differential Equations• Consider a system of n variables $y_i(t)$ • Each variable is described by a
differential equation that has a linear
dependence on all the other y_k • Show equations as individual equations
and in matrix form $\frac{dy_i}{dt} + \sum_{j=1}^n a_{ij}y_j = r_i(t)$ i = 1, ..., n
 $\frac{dy}{dt} + Ay = r$

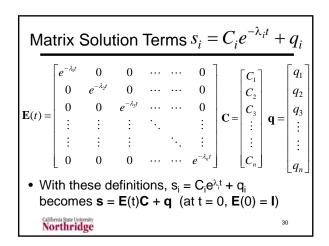


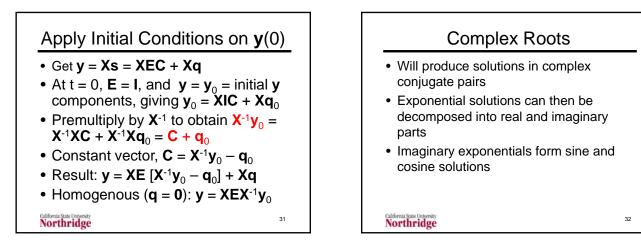


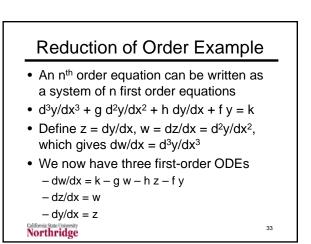


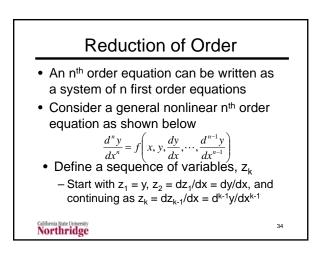
Structure of $\frac{d\mathbf{s}}{dt} + \Lambda \mathbf{s} = \mathbf{p}$			
$\begin{bmatrix} ds_1 \\ dt \\ ds_2 \\ dt \\ ds_3 \\ dt \\ \vdots \\ ds_n \\ dt \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ p_n \end{bmatrix} - \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ p_n \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ p_n \end{bmatrix}$	$\begin{bmatrix} \lambda_1 s_1 \\ \lambda_2 s_2 \\ \lambda_3 s_3 \\ \vdots \\ \vdots \\ \lambda_n s_n \end{bmatrix}$		
• Result is set of n scalar differential equations: $ds_i/dt = p_i - \lambda_i s_i$			

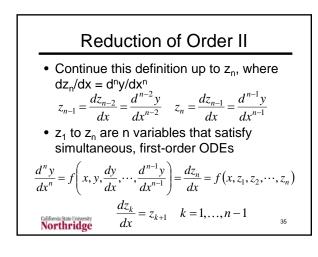


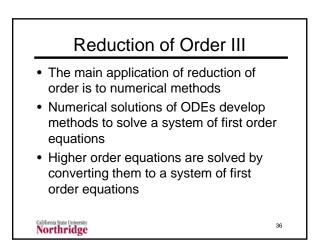












$$\frac{\text{Reduction of Order Example}}{\frac{d^2 y_1}{dt^2} + \frac{k_1 + k_2}{m_1} y_1 - \frac{k_2}{m_1} y_2 = 0} \qquad \frac{d^2 y_2}{dt^2} - \frac{k_2}{m_2} y_1 + \frac{k_3 + k_2}{m_2} y_2 = 0}$$
• Define variables $y_3 = dy_1/dt$ and $y_4 = dy_2/dt$
• Then $dy_3/dt = d^2y_1/dt^2$ and $dy_4/dt = d^2y_2/dt^2$
• Have four simultaneous first-order ODEs
$$\frac{dy_1}{dt} - y_3 = 0 \qquad \frac{dy_2}{dt} - y_4 = 0$$

$$\frac{dy_3}{dt} + \frac{k_1 + k_2}{m_1} y_1 - \frac{k_2}{m_1} y_2 = 0$$

$$\frac{dy_4}{dt} - \frac{k_2}{m_2} y_1 + \frac{k_3 + k_2}{m_2} y_2 = 0$$

$$37$$

Write as Matrix Equation		
Write four equations as	$\frac{d\mathbf{y}}{dt} + \mathbf{A}\mathbf{y} = 0$	
$\begin{bmatrix} dy_1 \\ dt \\ dy_2 \\ dy_3 \\ dt \\ dy_4 \\ dt \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{k_1 + k_2}{m_1} & -\frac{k_2}{m_1} \\ -\frac{k_2}{m_2} & \frac{k_3 + k_2}{m_2} \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	
California State University Northridge	38	

